skip to main content


Search for: All records

Creators/Authors contains: "Camacho, Ryan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We propose a design for an efficient spin-photon interface to a color center in a diamond microdisk. The design consists of a silicon oxynitride triangular lattice overlaid on a diamond microdisk without any aligmnent between the layers. This enables vertical emission from the microdisk into low-numerical aperture modes, with quantum efficiencies as high as 46% for a tin vacancy (SnV) center. Our design is robust to manufacturing errors, potentially enabling large scale fabrication of quantum emitters coupled to optical collection modes. We also introduce a novel approach for optimizing the free space performance of our device using a dipole model, achieving comparable results to full-wave finite difference time domain simulations with 7 · 106reduction in computational time.

     
    more » « less
  2. Abstract

    We present a computational study of Purcell factor enhancement for a novel hybrid-plasmonic ring resonator using a novel implementation of the body-of-revolution (BOR) finite-difference time-domain (FDTD) method. In this hybrid structure, a dielectric slot ring is surrounded by a metallic ring such that a hybrid plasmonic mode is generated within two thin low-index gaps. The surrounding metallic ring decreases the binding loss for small ring radii, leading to high-quality factors and mode-field confinement. The hybrid resonator shows high quality-factor values above 103and small mode volumes down to103λn3simultaneously, thus providing large Purcell factors (Fp> 104). The distributed strong confinement within two gaps renders the proposed resonator useful for multi-emitter applications.

     
    more » « less
  3. We present an open-source eigenmode expansion (EME) software package entirely implemented in the Python programming language. Eigenmode expansion Python (EMEPy) utilizes artificial neural networks to reproduce electromagnetic eigenmode field profiles to accelerate the EME process by a factor of 3. EMEPy provides an intuitive scripting interface, is easily compatible with a number of other Python packages, and is useful for educators and new designers.

     
    more » « less